Computers that Roar

Computers, like other media, are metaphor machines:
they both depend on and perpetuate metaphors. More
remarkably, though, they—through their status as
“universal machines”—have become metaphors for
metaphor itself.

From files to desktops, windows to spreadsheets,
metaphors dominate user interfaces. In the 1990s (and
even today), textbooks of human-computer interface
(HCI) design described metaphors as
“user-friendly” Metaphors
computer tasks familiar, concrete, and easy to grasp,
since through them we allegedly port already existing

central to

interfaces. make abstract

knowledge to new tasks (for instance, experience with
documents to electronic word processing). Metaphors
proliferate not only in interfaces, but also in computer
architecture: from memory to buses, from gates to the
concept of architecture itself. Metaphors similarly
structure software: viruses, UNIX daemons, monitors,
back orifice attacks (in which a remote computer
controls the actions of one’s computer), and so on. At
the contested “origin” of modern computing lies an
John von Neumann

analogy turned metaphor:

deliberately called the major components of modern
(inhuman) computers “organs,” after cybernetic
understandings of the human nervous system.
Drawing from the work of Alan Turing and Charles
Babbage, Jon Agar has argued that the computer,
understood as consisting of software and hardware, is
a “government machine.” Like the British Civil
Service, it is a “general-purpose ‘machine’ governed by
a code.”’

The role of metaphor, however, is not simply one
way. Like metaphor itself, it moves back and forth.
Computers have become metaphors for the mind, for
culture, for society, for the body, affecting the ways in
which we experience and conceive of “real” space:
from the

programmed mind running on the

hard-wired brain to reprogrammable culture versus
hard-wired nature, from neuronal networks to genetic
programs. Paul Edwards has shown how computers as
metaphors and machines were crucial to the Cold
War and to the rise of cognitive psychology, an
insight developed further by David Golumbia in his
analysis of computationalism. As cited earlier, Joseph
Weizenbaum has argued that computers have become
metaphors for all “effective procedures,” that is, for
anything that can be solved in a prescribed number
of steps, such as gene expression and clerical work.”

Weizenbaum also notes that the power of computer



as metaphor is itself based on “only the vaguest
understanding of a difficult and complex scientific
concept. ... The public vaguely understands—but is
firmly convinced—that any
procedure can, in principle, be carried out by a
computer . .. it follows that a computer can at least
imitate society in all their
procedural aspects.”” Crucially, this means that, at
least in popular opinion, the computer is a machine
that can imitate, and thus substitute for, all others
programming. This vaguest
understanding—software as thing—is neither
accidental to nor a contradiction of the computer as

nonetheless effective

nature, and
n3

man,

based on its

metaphor, but rather grounds its appeal.

Because computers are viewed as universal
machines, they have become metaphors for metaphor
itself: they embody a logic of substitution, a barely
visible conceptual system that orders and disorders.
Metaphor is drawn from the Greek terms
(change) and phor (carrying): it is a transfer that
transforms. Aristotle defines metaphor as consisting
“in giving the thing a
something else; the transference being either from
genus to species, or from species to genus, or from
species to species, or on grounds of analogy.”* George
Lakoff and Mark Johnson argue, “The essence of

metaphor is understanding and experiencing one kind of

mmeta

name that belongs to

thing in terns of another.”> Metaphor is necessary

“because so many of the concepts that are important
to us are either abstract or not clearly delineated in
our experience (the emotions, ideas, time, etc.), we
need to get a grasp on them by means of other
concepts that we understand in clearer terms (spatial
orientations, objects, etc.).”® Lakoff and Johnson argue
that we live by metaphors (such as “argument is war,”
“events are objects,” and “happy is up”), that they
serve as the basis for our thoughts and our actions.’
Metaphors govern our actions because they are also
“grounded
physical and cultural environments.”® That is, the

in our constant interaction with our
similarities that determine a metaphor are based on
our interactions with various objects—it is therefore
no accident that metaphors are thus prominent in
“interactive” design. Crucially, metaphors do not
simply conceptualize a preexisting reality; they also
create reality.” Thus, they are not something we can
“see beyond,” but rather things necessary to seeing.

Even to see beyond certain metaphors, they argue, we

need others.”® Metaphor is an “imaginative
rationality”: “Metaphor unites reason and
imagination. Reason, at the wvery least, involves

categorization, entailment, and inference. Imagination,
in one of its many aspects, involves seeing one kind
of thing in terms of another kind of thing—what we



have called metaphorical thought.”'" This imaginative
seeing one Kind of thing in terms of another thing
also involves hiding: a metaphor, Thomas Keenan
argues, means that “something . . . shows itself by
hiding itself, by announcing itself as something else

or in another form.”"

Paul Ricoeur, focusing more on metaphor as a
linguistic entity, similarly stresses the centrality and
creative power of metaphor. To Ricoeur, metaphor
grounds the possibility of logical thought. Ricoeur,
drawing from Aristotle’s definition, argues that change,
movement, and transposition (and thus deviation,
borrowing, and substitution) characterize metaphor."
By transposing an “alien” name, metaphor is a “cate-
gorical transgression a kind of deviance that

threatens classification itself.”'* Since metaphor,
however, also “‘conveys learning and knowledge
through the medium of the genus,’”” Ricoeur

contends, “metaphor destroys an order only to invent
a new one; and that the category-mistake is nothing
but the complement of a logic of discovery.”’® It is a
form of making, of poesis, that grounds all forms of
' This disordering that is
ordering, a dismantling that is also a redescription, is

“the
nl17

classification. also an
also instructive and pleasurable—it offers us
pleasure of wunderstanding that follows surprise.
This movement from surprise to understanding is

mirrored in metaphor itself, which is a mode of
animation, of change—it makes things visible, alive,

and actual by representing things in a state of
activity.'®

Computers, understood as universal machines,
stand in for substitution itself. Allegedly making

possible the transformation of anything into anything

else via the medium of information, they are
transference machines. They do not simply change X
into Y, they also animate both terms. They create a
new dynamic reality: the files they offer us are more
alive; the text that appears on their screens invites
manipulation, addition, animation. Rather than stable
text on paper, computers offer information that is
flexible, programmable, transmissible, and
ever-changing. Even an image that appears stably on
our screen is constantly refreshed and regenerated.
Less obviously, computers—software in particular—also
concretize Lakoff and Johnson’s notion of metaphors
as concepts that that form consistent
conceptual systems: software is an invisible program
that governs, that makes possible certain actions. But
if computers are metaphors for metaphors, they also
(pleasurably) disorder, they animate the categorical

archival system that grounds knowledge.

govern,

If theories of metaphor regularly assume that the



vehicle (the image expressly used) makes the abstract
tenor (the idea represented) concrete—that one makes
something unfamiliar familiar through a known
concrete vehicle—software as metaphor combines
what we only vaguely understand with something
equally vague. It is not simply, then, that one part of
the metaphor is “hidden,” but rather that both
parts—tenor and vehicle—are invisibly wvisible. This
does not mean, however, that software as metaphor
fails. It is used regularly all the time because it
succeeds as a way to describe an ambiguous relation
between what is visible and invisible, for invisible
laws as driving visible manifestations. Key to
understanding the power of software—software as
power—is its very ambiguous thingliness, for it
grounds software’s attractiveness as a way to map—to
understand and conceptualize—how power operates in
a world marked by complexity and ambiguity, in a
world filled with things we cannot fully understand,
even though these things are marked by, and driven
by, rules that should be understandable, that are
based on understandability. Software is not only
necessary for representation; it is also endemic of
transformations in modes of “governing” that make
governing both more personal and impersonal, that
enable both empowerment and surveillance, and
indeed make it difficult to distinguish between the

two.



2 Daemonic Interfaces, Empowering Obfuscations

Interfaces, in particular interactive GUIs (graphical
user interfaces), are widely assumed to have
transformed the computer from a command-based
instrument of torture to a user-friendly medium of
empowerment. From Douglas Engelbart’s vision of a
system to “augment
Shneiderman’s endorsement of “direct manipulation”
as a way to produce “truly pleased users,” GUIs have
been celebrated as enabling user freedom through
(perceived) visible and personal control of the screen.
This freedom, however, depends on a profound
screening: an erasure of the computer’s machinations

human intellect” to Ben

and of the history of interactive operating systems as

supplementing—that is, supplanting—human
intelligence. It also coincides with neoliberal manage-
ment techniques that have made workers both

flexible and insecure, both empowered and wanting
(e.g., always in need of training).'

Rather than condemning interfaces as a form of
deception, designed to induce false consciousness, this
chapter investigates the which this
paradoxical combination of visibility and invisibility,

extent to

of rational causality and profound ignorance, grounds
the computer as an attractive model for the “real”
world. Interfaces have become functional analogs to
ideology and its critique—from ideology as
consciousness to ideology as fetishistic logic, interfaces
seem to concretize our relation to invisible (or barely
visible) “sources” and substructures. This does not

false

mean, however, that interfaces are simply ideological.
Looking both at the use of metaphor within the early
history of human-computer-interfaces and at the
emergence of the computer as metaphor, it contends
that real-time computer interfaces are a powerful
response to, and not simply an
consequence of, postmodern/neoliberal
Both conceptually and thematically, these interfaces
offer their users a way to map and engage an

enabler or
confusion.

increasingly
invisible laws of late capitalism. Most strongly, they
induce the user to map constantly so that the user in
turn can be mapped. They offer a simpler, more
reassuring analog of power, one in which the user
takes the place of the sovereign executive “source,”

complex world allegedly driven by

code becomes law, and mapping produces the subiject.
These seemingly real-time interfaces emphasize the
power of user action and promise topsight for all:
they allow one to move from the local detail to the
global picture—through an allegedly traceable and



concrete path—by simply «clicking a mouse.
Conceptually drawn from auto navigation systems,
these interfaces follow in the tradition of cybernetics
(named after the Greek term kybernete for steersmen
or governor) as a way to navigate or control, through
a process of blackboxing.

Because of this, they render central processes for
computation—processes not under the direct control
of the user—daemonic: orphaned yet “supernatural”
beings “between gods and men ... ghosts of deceased
persons, esp. deified heroes.”” Indeed, the interface is
“haunted” by processes hidden by our seemingly
transparent GUIs that make us even more vulnerable
online, from malicious “back doors” to mundane data
gathering systems. Similar to chapter 1, this chapter
thus does not argue we need to move beyond specters
and the undead, but rather contends that we should
make our interfaces more productively spectral—by
reworking rather than simply shunning the usual
modes of “user empowerment.”



